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The principal nonlinear correction to the dynamics of gravity waves on an irrotational
fluid is traditionally derived as a non-resonant perturbation solution to the Stokes
expansion. When the problem is reformulated in the Hamiltonian description and
limited to moderately collimated random waves over infinite depth, the perturbation
term assumes a very simple and descriptive form. The sum-frequency component for
the surface height is just a bilinear product of the height with the associated scalar
strain, and the accompanying term in the potential is half the time derivative of the
squared linear height. This solution is exact in one surface dimension and remains
quite accurate for long-crested waves in two dimensions, with an error small to second
order in the angular spread of constituent wave vectors. It is a natural generalization
for random, disordered wave ensembles of the second-order Stokes solution, and its
effect is to sharpen the random crests and to flatten the troughs. For wave sets of
narrow relative bandwidth the difference-frequency component consists of a negligible
elevation term and a non-negligible potential term whose gradient is the surface value
of the volume return flow balancing the quadratic wave transport of fluid.

1. Introduction
Even the casual observer of waves on lakes or the ocean is aware that the crests

are sharper than the troughs, and we take for granted that the nonlinearity of the
dynamics is responsible for steepening the slopes near the crests through a local
rearrangement of the flow. For an explanation that goes beyond the Stokes solution
for a steady monochrome wave and extends to random wave sets, we might look
to the leading non-resonant perturbation correction, which is driven by – and more-
or-less passively accompanies – the linear solution (Phillips 1960). Unfortunately this
leading correction, whose general form is easily derived and has long been available
(Longuet-Higgins 1963; Webber & Barrick 1977), resists easy interpretation because
of the detailed structure of its Fourier representation. The problem is that the general
correction has to account for the mutual interaction of all possible pairs of waves
in a heterogeneous set, not just the ‘self-interaction’ responsible for the shape of an
individual waveform. For instance, the to-and-fro transport and amplitude modulation
of short waves on the orbital currents of long waves is part of this solution, though
these effects are better described by other approaches (Longuet-Higgins & Stewart
1960, 1962).

All the non-resonant behaviour, in which the quadratic terms are the leading order,
can in principle be absorbed by a canonical transformation of the field equations;
Krasitskii (1994) has used such a procedure to derive a series expansion in powers
of the linear solution. However the quadratic term requires a sum over all pairs of
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wavenumbers, just as in the leading perturbation solution. Creamer et al. (1989) have
devised an implicit integral form for the canonical transformation in one surface
dimension that they show to be capable of displaying crest sharpening and orbital
wave advection, but the arithmetic is subtle and evidently not formally extendable to
two surface dimensions. Stokes expansions of nearly monochromatic wave trains with
slowly varying amplitude and phase have been carried out in one surface dimension
by Tayfun (1986) and Trulsen & Dysthe (1996); these reproduce the usual solution
locally along with corrections proportional to the rate of variation.

When the problem is reformulated in the Hamiltonian description and limited to
moderately collimated random waves over infinite depth, the perturbation solution
assumes a simple and easily interpretable form, one that appears to have been
unnoticed in the standard formulation. It consists of terms that are simple quadratic
products of quantities from the linear solution; in one surface dimension this solution
is exact for arbitrary random wave sets, so long as these contain progressive waves
propagating in a common direction. Its form is a direct generalization of the narrow-
band second-order Stokes wave. In two surface dimensions the solution is approxi-
mate, with residual errors that are small to second order in the angular spread of the
wave sets, so that the solution remains good for long-crested random waves.

As with all products of linear fields, the solution is composed of sum-frequency
and difference-frequency components – see for example Forristall (2000); these can
be specified independently, and in fact a consistent perturbation solution requires
that they be constructed individually. In the difference-frequency solution the velocity
potential plays a prominent role, supplying the volume return flow balancing the
quadratic wave transport of fluid. While this result is unsurprising, its formal
demonstration at second order is believed to be new.

2. Formulation
The Hamiltonian description of deep-water irrotational wave motion in the form

introduced by Watson & West (1975) and elaborated by Milder (1990) provides a pair
of evolution equations for the surface elevation ζ (x, t) and the surface value φ(x, t)
of the velocity potential, which through first nonlinear order are

∂ζ

∂t
− k̂φ + ∇ · (ζ∇φ) + k̂(ζ k̂φ) = 0,

∂φ

∂t
+ gζ +

1

2
[(∇φ)2 − (k̂φ)2] = 0; (2.1)

k̂ is the linear operator that multiplies each spatial Fourier component by its wave-
number modulus, ∇ is the two-dimensional horizontal gradient; and g is the accelera-
tion due to gravity. These equations, equivalent to the usual kinematic and dynamical
boundary conditions, are a canonical pair derivable from the Hamiltonian

H [ζ, φ] =
1

2

∫
{φk̂φ + gζ 2 + ζ [(∇φ)2 − (k̂φ)2]} dx. (2.2)

The horizontal and vertical orbital currents at the surface are, in this description

u = ∇φ − w∇ζ, w = (1 + [ζ, k̂] + · · ·)k̂φ, (2.3)

where [ζ, k̂] = ζ k̂−k̂ζ is the commutator product, an operator in which k̂ is understood
to be applied to the entire expression to its right. The density of wave momentum, or
mass transport, is exactly

m = −φ∇ζ. (2.4)
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Inserting

ζ = ζ0 + ζ1 + · · · , φ = φ0 + φ1 + · · · , (2.5)

into (2.1), we obtain for the leading nonlinear terms

∂ζ1

∂t
− k̂φ1 = f,

∂φ1

∂t
+ gζ1 = −p, (2.6)

in which the quantities

f = −[∇ · (ζ0∇φ0) + k̂(ζ0k̂φ0)], p =
1

2
[(∇φ0)

2 − (k̂φ0)
2] (2.7)

can be interpreted respectively as an excess fluid flux and pressure, both quadratic in
the linear solution

ζ0 = Reψ, φ0 = Re(−iĉψ), (2.8)

where ĉ =

√
g/k̂ is the phase-speed operator, and where

ψ =

∫
a(k)eiθk dkc, θk(x, t) = k · x − ωkt (2.9)

with

ωk =
√

gk, dkc = dk/4π2. (2.10)

3. Sum and difference beats
The product of any two quantities related to the linear solution (2.8) produces terms

with sums and differences of wavenumber and frequency pairs (sum and difference
beats). For example, the squared elevation

q = ζ 2
0 = q (+) + q (−) (3.1)

is, according to (2.9),

q (+) =
1

2
Reψ2 =

1

2
Re

∫∫
aa′ ei(θ+θ ′) dkc dk′c,

q (−) =
1

2
Reψ∗ψ =

1

2
Re

∫∫
a∗a′ ei(θ ′−θ) dkc dk′c,

⎫⎪⎪⎬
⎪⎪⎭

(3.2)

and for the usual gravity-wave dispersion relation (2.10) these components are
non-overlapping in the wavenumber–frequency domain. The source terms in the
perturbation equation (2.6) consist of combinations of terms analogous to q (±) above,
and the solutions can be seen to have the form

ζ
(±)
1 =

1

2
Re

∫∫
(a, a∗)a′Z(±)(k, k′) ei(θ±θ ′) dkc dk′c, (3.3)

and so on. While it is straightforward to work out all the necessary double Fourier
coefficients so as to recognize among them the approximate solution below, it will
be simpler to present the solution and demonstrate directly that it satisfies the
perturbation equations. In doing so we shall rely on the usual relations among the
linear fields (2.8) and their time derivatives:

∂ζ0

∂t
− k̂φ0 = 0,

∂φ0

∂t
+ gζ0 = 0. (3.4)
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4. The sum-beat solution
The following simple sum-frequency products of the linear fields will now be shown

to satisfy the perturbation equation to a good approximation for long-crested random
waves:

ζ
(+)
1 = (ζ0k̂ζ0)

(+) =
1

2
Reψ k̂ψ,

φ
(+)
1 = (ζ0k̂φ0)

(+) =
1

2

(
∂ζ 2

0

∂t

)(+)

=
1

4

∂

∂t
Reψ2.

⎫⎪⎪⎬
⎪⎪⎭

(4.1)

Using (3.4) and k̂2 =−∇2 to evaluate the time derivative

∂ζ1

∂t
= (k̂φ0)(k̂ζ0) + ζ0k̂

2φ0

= (k̂φ0)(k̂ζ0) + (∇φ0) · (∇ζ0)− ∇ · ζ0∇φ0, (4.2)

and subtracting k̂φ1 = k̂ζ0k̂φ0, we have

∂ζ1

∂t
− k̂φ1 = f + rζ , rζ = (k̂φ0)(k̂ζ0) + (∇φ0) · (∇ζ0). (4.3)

For the sum-frequency domain the residual error has the form

r
(+)
ζ =

1

2
Re

∫∫
ab′(kk′ − k · k′) ei(θ+θ ′) dkc dk′c, b = −icka; (4.4)

similarly

∂φ1

∂t
= (k̂φ0)

2 − gζ0k̂ζ0 (4.5)

or

∂φ1

∂t
+ gζ1 = (k̂φ0)

2 = −p + rφ, rφ =
1

2
[(k̂φ0)

2 + (∇φ0)
2], (4.6)

with a residual error

r
(+)
φ =

1

4
Re

∫∫
bb′(kk′ − k · k′) ei(θ+θ ′) dkc dk′c. (4.7)

Note that in one surface dimension, when the wave vectors share a common direction,
the expression (kk′ − k · k′) vanishes identically along with both residual terms, so that
the solution (4.1) is exact. It can be interpreted as the random-wave generalization
to the second-order Stokes solution, as will be discussed below. This result breaks
down for shallow water, when the primary waves feel the bottom more strongly than
the second-harmonic perturbations. In two surface dimensions the result survives as
an accurate approximation when the waves are long-crested, that is, directionally
collimated with small relative angles ϕkk′; then the relative residual error in the source
terms, as expressed by the ratio

(kk′ − k · k′)
(kk′ + k · k′)

= tan2(ϕk,k′/2), (4.8)

is small to second order in ϕk,k′ .
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5. The difference-beat solution
The linear relations (3.4) can be used to rewrite the quadratic flux and pressure

(2.7) in the form

f = −∇ · m − ∇2(ζ0φ0)−
1

2
k̂

(
∂

∂t
ζ 2
0

)
,

p =
1

4

[
∇2φ2

0 −
(

∂

∂t

)2

ζ 2
0

]
+

1

2

∂

∂t
(φ0k̂ζ0),

⎫⎪⎪⎬
⎪⎪⎭

(5.1)

which is useful for the following reason. Each appearance of ∇2, k̂, or ∂/∂t in
front of a quantity allows one to infer that the difference-frequency value of the
corresponding Fourier factor is smaller than the sum-frequency value by the ratio
(k − k′)2/(k + k′)2, |k − k′|/|k + k′|, or (ω − ω′)/(ω + ω′). In addition, the phase
quadrature (2.8) between ζ0 and φ0 implies the ratio (ω − ω′)/(ω + ω′):

(φ0ζ0)
(−) =

1

2
Re

∫∫
(ia∗c)(a′) ei(θ ′−θ) dkc dk′c

=
1

4
Im

∫∫
a∗a′(c′ − c′) ei(θ ′−θ) dkc dk′c, (5.2)

with the second step above coming from the symmetric interchange c.c.+ (k→← k′). (A

similar argument applies to ζ0 and k̂φ0.) If we now limit the waves under consideration
to a set that is narrow-band in both dimensions,

|k − k′|/|k + k′| < β, (5.3)

with a small number β denoting half the relative bandwidth, we obtain

f (−) = −∇ · m(−) + O(β2)f (+), p(−) = 0 + O(β2)p(+), (5.4)

so that to a quadratically good approximation in β we can neglect the pressure and
retain only the leading flux term, which, though small to order β , can be recognized
as the local rate of fluid accumulation from quadratic wave transport (2.4). As shown
below it serves as the surface source of the balancing volume return flow.

When p is neglected in (2.6) one can solve for the perturbation potential as(
∂2

∂t2
+ gk̂

)
φ

(−)
1 = −gf (−), (5.5)

which can be read as describing the response of low-wavenumber surface oscillators
driven at frequencies well below their resonance by a fluctuating fluid source. The
second time derivative can in fact be ignored to order β in this equation, as one can

show by dividing by gk̂,

(1 + F̂−1)φ(−)
1 = −k̂−1f (−), (5.6)

with F̂−1 standing for the inverse Froude-number operator,

F̂−1 =
1

gk̂

∂2

∂t2
; (5.7)

this quantity, the gravitational compliance of the surface at low difference frequencies,
is small to order

F̂−1 ≈ (ω − ω′)2

g|k − k′| =
k − k′

|k − k′|
ω − ω′

ω + ω′
= O(β). (5.8)
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Equation (5.6) then represents flow under a flat surface – see (5.10) below – with

the potential given by the right-hand side. Note that the definition of the operator k̂
implies

φ
(−)
1
∼= −k̂−1f (−)(x) = −

∫
f (−)(x ′)

2π|x − x ′| dx ′, (5.9)

which can be recognized as the surface value of a volume potential arising from
the source density f (−)∼=−∇ · m(−), so that its surface gradient is the horizontal
component of the return flow. The accompanying surface elevation can be evaluated
similarly as

ζ
(−)
1
∼= −

1

gk̂

∂

∂t
∇ · m = O(β)ζ (+)

1 . (5.10)

According to equation (2.3) the total horizontal second-order current at the surface
is

u(−)
1 = ∇φ

(−)
1 + us, (5.11)

in which the second term, referred to here as the Stokes current by analogy to the
classical drift, arises purely kinematically from the linear solution in the Hamiltonian
formulation:

us = −(w0∇ζ0)
(−). (5.12)

It is easy to show from the definition m =−φ∇ζ that the return flow is smaller than
the Stokes current by the factor β , so that us is in fact the dominant second-order
low-frequency surface current for narrow-band wave sets. Note that in general both
the wave momentum and the Stokes current have non-zero mean.

6. Crest sharpening

The non-dimensional surface strain field k̂ζ0 is numerically equivalent to the wave
slope, the traditional measure of nonlinearity, but is in phase with the height, and for

narrow-band wave groups very similar in profile. The quantity ζ0k̂ζ0 is the random
analogue of the squared monochrome sinusoid, positive both for local maxima and
minima of ζ0 but with a positive average. The perturbation solution derived above,
shorn of the local average,

ζ
(+)
1 = ζ0k̂ζ0 − (ζ0k̂ζ0)

(−) (6.1)

is the analogue of the double-frequency sinusoid. Added to the linear solution it
elevates both the crests and troughs, while depressing the intermediate heights.

However k̂ζ0 is not a perfect copy of ζ0, because it contains the constituent Fourier
components in different proportions. For a statistically homogeneous random height
field the correlation ρ between the two,

ρ2 =
〈ζ0k̂ζ0〉2〈

ζ 2
0

〉
〈(k̂ζ0)2〉

, (6.2)

can be evaluated for a given wave-height spectrum S(k) as

ρ2 =

(∫
kS dkc

)2(∫
S dkc

)−1(∫
k2S dkc

)−1

(6.3)
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and for a Phillips spectrum S = Bk−4 band-limited between k1 and k2 = k1(1 + 2β),
with otherwise arbitrary directional dependence, this becomes

ρ2 =
2β

(1 + β) ln(1 + 2β)
∼= 1− β2/3. (6.4)

The use of β here to denote half the relative bandwidth is intended to be compatible
with the previous definition (5.3). For modest bandwidth the correlation is substantial,
approaching unity for vanishing bandwidth as it should. The total second-order
solution for height,

ζ = Re
(
ψ + 1

2
ψ k̂ψ

)
+ ζ

(−)
1 , (6.5)

(see (4.1)) clearly reproduces the ordinary Stokes solution in the limit of zero
bandwidth. As a proper generalization to large bandwidth it should also account for
the known behaviour of Stokes solutions with slowly varying amplitude and phase.
That it does so can be demonstrated by applying (6.5) to an explicit narrow-band
construction

ψ(x, t) = ei(k0 · x−ω0t)A(x, t) (6.6)

in which a slowly varying complex envelope A modulates a carrier sinusoid at central

wavenumber k0. From the Fourier definition of k̂ one can deduce

k̂ψ(x, t) = ei(k0 · x−ω0t)
[
k2

0 − 2ik0 · ∇− ∇2
]1/2

A(x, t)

= ei(k0 · x−ω0t)
[
k0 − iκ0 · ∇ + · · ·

]
A(x, t), κ0 = k0/k0, (6.7)

which shows that the second-order correction includes a small (order β) contribution
from the random gradient of the envelope, as derived previously by Tayfun (1986) and
Trulsen & Dysthe (1996). Note that in these traditional constructions the choice of
central wavenumber is somewhat arbitrary; the results must nevertheless be invariant
to small increments in the choice. The more general expression (6.5) is free of this
arbitrariness.

At larger bandwidth, when the random elevation becomes increasingly chaotic,
the crest sharpening occurs on average, but with more random local variation. If
we assume that the complex height ψ is Gaussian with zero mean and variance
2〈ζ 2

0 〉, then for a particular value ψ = |ψ | eiϕ the corresponding strain field has the
conditional expectation and variance

〈k̂ψ〉ψ = ρε(ψ/h), varψ (k̂ψ) = 2|ψ/h|2ε2(1− ρ2), (6.8)

where h and ε are the r.m.s. linear height and strain,

h2 =
〈
ζ 2
0

〉
, ε2 = 〈(k̂ζ0)

2〉. (6.9)

The total wave height (6.5) can then be described, for a given value ψ of the linear
solution, by the conditional normal distribution

ζ = ζ0 + 〈ζ1〉ψ ± (ζ1)rms + ζ
(−)
1

= ζ
(−)
1 + |ψ |[(cos ϕ + ερ|ψ/2h| cos 2ϕ)± ε|ψ/2h|

√
1− ρ2]. (6.10)

Note that this expression predicts second-order crest sharpening for a progressive
random-wave set of arbitrary bandwidth. Here, the slowly varying term ζ

(−)
1 serves

merely as a local mean level. In the narrow-band limit the quantity ϕ has the usual
meaning as the phase of the modulated sinusoid, for which ϕ = 0, π locates the crests
and troughs. For wave sets of wider bandwidth and more disordered profiles the
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amplitude |ψ | can vary substantially over a typical wavelength and interfere with this
simple interpretation. It remains true nevertheless that the second-order term elevates
the surface in the regions ϕ≈ 0,±π inside which the actual local crests and troughs
occur, while depressing the surface near the zero-crossing loci ϕ =±π/2 defining
the wave ‘shoulders’ separating the crests and troughs. These effects, which occur
preferentially at the larger non-dimensional amplitudes |ψ/h|, combine to sharpen on
average the intervening crests and flatten the troughs.

The remaining random variability at second order in (6.10), present in addition
to the average behaviour and induced by the finite bandwidth, is approximately
proportional to the bandwidth; in the example (6.4) above, the fraction is√

1− ρ2 ∼= β/
√

3, (6.11)

which for a wave spectrum spanning one octave of wavenumber (β = 1/3) would
amount to 19 % r.m.s.

7. Implications for crest-height statistics
Measured crest heights in the open ocean are known to exceed the Gaussian

prediction by 10 %–20 % for the higher, less frequent events. Dynamical simulations
of broad-band wave sets at second order account pretty well for the excess, as shown
by Forristall (2000). On the other hand, corresponding formal predictions, based on
narrow-band modulated Stokes waves, noticeably underpredict the heights. Can the
present generalized representation improve the predictions? Unfortunately a detailed
derivation of wave-height statistics is outside the scope of this paper; however, some
observations may be in order.

In the narrow-band limit the normalized crest amplitudes of the linear solution y

are predicted by the envelope amplitude itself, which for a Gaussian process obeys
the Rayleigh exceedance distribution

PR(y) = exp(−y2/2); (7.1)

the second-order Stokes representation of normalized elevation z,

z = y + 1
2
ε0y

2, ε0 = k0h, (7.2)

solved for y(z), then yields the probability for the nonlinear crest height to exceed z

(Tayfun 1980):

P>(z) = PR(y(z)), y(z) = ε−1
0

[
(1 + 2ε0z)

1/2 − 1
]
. (7.3)

The present broad-band generalization to (7.2) is

z = y + 1
2
εy2

[
ρ + w(1− ρ2)1/2

]
, y = |ψ |/h (7.4)

(see (6.8)–(6.10)), under the simplifying assumption that one can neglect ζ
(−)
1 and take

ϕ =0 as defining the crests. Here w is an independent Gaussian random variable of
unit variance. Note that this expression reverts to (7.2) in the narrow-band limit, as
ρ→ 1. For a broad-band Gaussian process y the exceedance formula (7.1) for maxima
must be replaced by a more general formula given by Rice (1944, equation 3.6–11),
because the irregular envelope amplitude is no longer a reliable guide to the
distribution of maxima. As it happens, the exceedance probability in this case is
asymptotically the same as PR(y) for the higher crests, when y2� 1. The implied
nonlinear crest-height probability can then be computed as in (7.2) and (7.3), with
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the replacement

ε0 → ε
[
ρ + w(1− ρ2)1/2

]
, (7.5)

and the result averaged over w. It is not hard to show that this replacement in fact
increases the exceedance frequency P>(z). Whether this increase makes up the defect
in the existing formula remains to be seen.

8. Discussion
The simple quadratic expression (6.5) for elevation, along with its accompanying

surface potential (2.8), (4.1), is a natural generalization of the second-order, slowly
varying Stokes solution to random wave sets of finite bandwidth. It is an exact
solution to the leading perturbation correction in one surface dimension and a good
approximation for long-crested waves in two surface dimensions. Its factored form in
spatial coordinates lends itself to a simple formal explanation of crest sharpening in
disordered, naturally occurring wave sets. For purposes of numerical simulation it has
the advantage of economy as well, requiring only one additional Fourier transform
to compute the nonlinear correction to the elevation.

It should be noted that when the relative bandwidth is not small, the difference-
beat elevation solution ζ

(−)
1 is no longer negligible as in § 5. However, for β < 1/3 the

difference wavenumbers are all less than the lower limit of the primary band and these
terms cannot interfere with the second-order distortion of the waveforms worked out
here. The present solution can therefore be relied on as a useful description of random
wave sets spanning up to an octave of wavenumber.

On the other hand, as β approaches unity the ratio of maximum to minimum
wavelength becomes large; the sum and difference beats generated by the longest
waves then take the form of sideband pairs accompanying the shorter waves, a form
which accounts for the advective displacement of the short waves by the long-wave
orbital currents. The simple sum-beat solution developed here, while still valid, does
not include these effects.

I am grateful to Arete Associates for sponsoring this work, and to the Journal’s
reviewers, whose suggestions guided and improved the presentation.
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